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Abstract. We study a continuation approach via the Gaussian transform and D.C. programming
for solving both exact and general distance geometry problems. This approach relies on a new
formulation of the problems and their Gaussian transforms which are both smooth D.C. (difference
of convex functions) programs. A D.C. optimization algorithm is investigated for solving the trans-
formed problems. Numerical experiments on the data derived from PDB data bank up to 4189 atoms
show the usefulness of the reformulation, the globality of sought solutions, the robustness and the
efficiency of the proposed approach.
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1. Introduction

The determination of a molecular conformation can be tackled by either minim-
izing a potential energy function (if the molecular structure corresponds to the
global minimizer of this function) or solving the distance geometry problem [7, 10]
(when the molecular conformation is determined by distances between pairs of
atoms in the molecule). Both methods are concerned with global optimization
problems. The molecular exact distance geometry problem consists in finding
positions x1, . . . , xn of n atoms in IR3 such that

‖xi − xj‖ = δij , (i, j) ∈ S, (1)

where S is a subset of the atom pairs, δij with (i,j)∈ S is the given distance between
atoms i and j , and ‖ · ‖ denotes the Euclidean norm. Usually, a small subset
of pairwise distances is known, i.e., S is small, and in practice, lower and upper
bounds of the distances are given instead of the exact values. Further, it should be
noted that, by the error in the theoretical or experimental data, there may not exist a
solution to this problem, then an ε-optimal solution of (1), namely a configuration



376 LE THI HOAI AN

x1, . . . , xn satisfying

| ‖xi − xj‖ − δij |≤ ε, (i, j) ∈ S, (2)

is useful. When only the lower and upper bounds of δij are given, we have the
so-called general distance geometry problem which consists of finding a set of
positions x1, . . . , xn in IR3 such that

lij ≤ ‖xi − xj‖ ≤ uij , (i, j) ∈ S, (3)

where lij and uij are lower and upper bounds of the distance constraints, respect-
ively.

The data of (3) can be succinctly represented by a graph G(N,S). The vertices
N = {1, ..., n} correspond to the atoms and an edge (i, j) ∈ S connects vertices i

and j if the bounds lij and uij of the distance between the corresponding atoms are
known. Throughout this paper, we assume that the graph G(N,S) is connected.
This assumption is not restrictive for Problem (3) since it can be decomposed into
a number of smaller problems otherwise.

The standard formulation of (3), due to Crippen and Havel [7], is in terms of
globally solving the nonconvex program

0 = min


f (x1, . . . , xn) =

∑
(i,j)∈S

pij θij (x
i − xj ) : x1, ..., xn ∈ IR3


 , (4)

where the pairwise function θij : IRn �→ IR is defined by

θij (x) = min2

{‖x‖2 − l2
ij

l2
ij

, 0

}
+ max2

{‖x‖2 − u2
ij

u2
ij

, 0

}
. (5)

It is clear that f ∈ C1 but f /∈ C2.
The distance geometry problems are very important in molecular biology, and

have recently attracted a fair amount of attention within the optimization com-
munity. Several methods have been proposed for solving the distance geometry
problems (1) and/or (3), among them it is worth citing the interesting approaches
such as the ABBIE algorithm [11], the continuation methods based on the Gaussian
transform [13, 15], the stochastic/perturbation algorithm [21], the αBB algorithm
[8], the semi-definite programming approach [1], the matrix completion approach
[12], and the D.C. (different of convex functions) optimization algorithms called
DCA [3, 5]. For a rather complete lists of references the reader is referred to [5, 14].
Practically, one is often faced with very large scale problems for which global
methods like branch and bound are expensive. So it is worth investigating local
approaches conjointly with global techniques such as smoothing. An advantage of
local approaches for these problems is that the optimal value is a priori known,
therefore it will be easy to recognize whether the algorithm provides a global
minimizer.
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Very recently, the DCA have been extensively studied for solving the exact
distance geometry problem [5] and the general distance geometry problem ([3]).
It has been shown in [3, 5] that the DCA can be well exploited to obtain efficient
algorithms that solve both exact and general large scale distance geometry prob-
lems. Note that the standard optimization problem (4)–(5) is a D.C. program but
the objective D.C. function is too complex and inconvenient for DCA. To simplify
matters, the objective function in [3] to the general distance geometry problem (3)
has been chosen in an elegant way (a nonsmooth nonconvex function)

0 = min



∑

(i,j)∈S

pij (‖xi − xj ‖ − tij )
2 : x1, ..., xn ∈ IR3, lij � tij � uij , (i, j) ∈ S




(6)

which makes it possible to express DCA in a simple form; it actually requires
matrix-vector products and only one Cholesky factorization, and allows one to
exploit sparsity in the large scale setting. The algorithms proposed in [3] are in fact
composed of two phases: the first phase consists of finding a good starting point
for Phase 2. It begins by completing the missing distance matrix (using the shortest
paths between the pairs of atoms) and then solves the exact distance geometry
problem in which all “distances” are known by the DCA. The second phase is the
DCA applied to the original problem. The algorithms work well for the artificial
test problems where a protein contains at most 4096 atoms and for the real world
models derived from the PDB data bank (http:www.rcsb.org/pdb/) with up to 4189
atoms. A disadvantage of these methods is that, although the strategy of Phase 1 is
quite suitable for DCA to reach global solutions to the distance geometry problem,
it is quite expensive (the running time of Phase 1 is equal to that of Phase 2).

To get around this drawback, more precisely, to find a good starting point of
DCA without using Phase 1, we propose in the present paper a combined DCA-
smoothing technique. Instead of (6) we consider a new D.C. formulation with a
smooth (actually infinitely differentiable) objective function:

0 = min



∑

(i,j)∈S

pij (‖xi − xj ‖2−t2
ij )

2 : x1, ..., : xn ∈ IR3, lij � tij � uij , (i, j) ∈ S


 .

(7)

Like (6), this formulation corresponds to both exact and general distance geo-
metry problems, because in the exact distance geometry problem one has lij =
uij = δij , then we take tij =δij and (7) becomes (8). The new formulation has
several advantages which are favourable to the use of DCA as well as smoothing
techniques via the Gaussian transform. First, the objective function is infinitely
differentiable, and its Gaussian transform can be computed explicitly. Second, the
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transformed problem is a nice D.C. program for which DCA is fast because its
works only on vector products and does not require the Cholesky factorization.
Third, from the numerical point of view, although the additional variables tij in-
crease the dimension of the problem, they do not really cause any trouble, since
the problem is solved separately in variables x and t . However, the introduction of
tij in (7) is crucial to get an explicit Gaussian transformed function of the original
objective function.

The idea of the use of the continuation approach via the Gaussian transform for
distance geometry problems is not new: Moré and Wu [13] proposed an algorithm
for solving the exact distance geometry problem (1) in the form

0 = min



∑

(i,j)∈S

pij

(
δ2
i,j − ‖xi − xj‖2

)2 : x1, ..., xn ∈ IR3


 (8)

by the Gaussian smoothing technique via the trust region method. Computational
experiments with up to 648 variables (n = 216) in [13] proved that the continuation
method is more reliable and efficient than the multistart approach, a standard pro-
cedure for finding the global minimizer to (8). However, we observe that the trust
region method applied to the sequence of subproblems in the continuation approach
is expensive and thus may not be efficient in the large scale setting. For the general
distance geometry problem (3), using the formulation (4)-(5) Moré and Wu [15]
introduced the dgsol algorithm based on the Gauss-Hermite transform and the
variable-metric limited-memory code MINPACK-2. Computational experiments
on protein fragments with 100 and 200 atoms from the PDB data bank showed
that the dgsol code is also more efficient than the multistart algorithm.

It is worth noting that our continuation approach for the distance geometry prob-
lems is completely different from that of Moré-Wu’s work: with the formulation
(7) we get exactly and explicitly the Gaussian transformed function while with
the formulation (4)–(5) Moré and Wu [15] were able only to get an approxima-
tion to the Gaussian transformed function, say the Gauss–Hermite approximation
which is quite complicated and inconvenient to use DCA. On the other hand, our
optimization method for the transformed problem is based on D.C. programming
and DCA while Moré and Wu used the trust region method in [13] (for the exact
distance geometry problem) and the limited-memory code in [15]. Featured as a
descent method without line-search, DCA is at present one of a few algorithms in
the local approach which has been successfully applied to many large-scale D.C.
optimization problems and proved to be more robust and efficient than the related
standard methods (see [2, 4, 5, 18, 19] and references therein).

Our present method has several advantages. First, by using the continuation
approach which traces the minimizers of the smooth function back to the original
function, the Phase 1 in [3, 5] is no longer needed. Second, since the DCA applied
to Gaussian transformed problems works only on vector products and does not
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require the Cholesky factorization, it is efficient in large scale problems and faster
than the trust region approach. Third, we can exploit sparsity of the given distance
matrix. This is important because only a small subset of constraints is known in
practice.

We have tested our algorithm on a set of data derived from PDB data and com-
pared it with the two phase algorithm GDCA in [3]. Numerical experiments show
that the proposed algorithm solves these problems more efficiently and reliably
than GDCA [3].

The paper is organized as follows. In Section 2 we compute the Gaussian trans-
form of the objective function. The DCA for solving the smoothing distance geo-
metry problem is presented in Section 3. Our main algorithm in the continuation
approach is described in Section 4 and the numerical experiments as well as the
conclusion are reported in Section 5.

2. The Gaussian Transform of the Objective Function of (7)

In general the distance geometry problems are defined in arbitrary dimensions p.
Here, for molecular conformations, the problems are considered in IR3. However
the results in this paper hold for any dimension p.

In Euclidean distance geometry problems, we must take into consideration the
symmetry of both the subset S (i.e., (i, j) ∈ S implies (j, i) ∈ S) and the weight
matrix P = pij ). Let Sw be the set defined by

Sw := {(i, j) ∈ {1, . . . , n} × {1, . . . , n} s.t. (i, j) ∈ S, i < j}. (9)

To alleviate calculations in the sequel, we consider problem (7) in the form:

(GDGP) inf


1

4

∑
(i,j)∈Sw

pij (‖xi − xj‖2−t2
ij )

2 : x1, ..., xn ∈ IR3, lij (10)

≤ tij ≤ uij , (i, j) ∈ Sw
}
.

Since only the pairs (i, j) ∈ Sw are involved in the constraints, we denote by
ind(i, j) the indices of the pairs (i, j) in the set Sw and consider only the elements
tij with (i, j) ∈ Sw. Let T be the column-vector in IRd (d = |Sw|) defined by these

elements: T =
(
T1, . . . , Tind(i,j), . . . , Td

)T ∈ IRd with Tind(i,j) = tij for (i, j) ∈ Sw.
Let also X be the column-vector in IRp.n that contains n elements xj ∈ Rp, j =

1, . . . , n, say X =




x1

.

.

.

xn


 . Denote by c(i, j) the indices in X of i−th component

of the vector xj in Rp. Then c(i, j) = p(j − 1) + i for i = 1, ...p, j = 1, ..., n,
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and Xc(i,j) = (xj )i . Define now the pairwise functions dij : IRpn �−→ IR and
ϕij : IRd �−→ IR by dij (X) := ‖xi − xj‖2, ϕij (T ) := T 2

ind(i,j) = t2
ij . Then (GDGP)

can be rewritten in the form

(GDGP) 0 = inf


F(X, T ) := 1

4

∑
(i,j)∈Sw

pij (dij (X) − ϕij (T ))2 : (11)

(X, T ) ∈ IRpn×C
}
,

where

C := {T ∈ IRd : lij ≤ tij ≤ uij , (i, j) ∈ Sw}. (12)

We have

PROPOSITION 1 (i) If a set of positions (x1, ..., xn) is a solution to problem (3),
then the corresponding (X, T ) verifying tij = ‖xi −xj‖ for (i, j) ∈ S is a solution
to (GDGP).
(ii) If (X, T ) is a solution to (GDGP), then the set of positions (x1, ..., xn) is a
solution to (3) and tij = ‖xi − xj‖ for (i, j) ∈ S.

The Gaussian transform of a function f : IRn → IR, denoted by 〈f 〉λ, is defined
as

〈f 〉λ(x) = 1

πn/2λn

∫
IRn

f (y) exp

(− ‖ y − x ‖2

λ2

)
dy

or again, by the change of variable y �→ x + λu :

〈f 〉λ(x) = 1

πn/2

∫
IRn

f (x + λu) exp
(− ‖ u ‖2) du.

In this section we compute the Gaussian transform of F(X, T ), the objective
function of (GDGP), by using the basic results on the computational Gaussian
transform of functions given in [13]. Let hij : IRp×IR �→ IR be the function defined
by

hij (x, t) := (‖x‖2 − 1

2
t2)2. (13)

Then we can express F(X, T ) in the form

F(X, T ) := 1

4

∑
(i,j)∈Sw

pijhij (x
i − xj ,

√
2tij ), (14)
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or

F(X, T ) := 1

4

∑
(i,j)∈Sw

pijhij (P
T
ij (X, T )), (15)

where Pij is the (pn+d)× (p+1)-matrix with P T
ij =

(
Qij 0d×1

01×np qij

)
. Here Qij

is the (pn × p)− matrix defined by

Qij = (ec(1,i) − ec(1,j), ..., ec(p,i) − ec(p,j)), (16)

qij is the row-vector in IRd such that [qij ]ind(i,j) = √
2, [qij ]k = 0,∀k 
= ind(i, j),

and ek ∈ IRp.n is the unit vector with one in the kth component and zero otherwise.
Let Fij : IRpn × IRd �→ IR be such that Fij (X, T ) = hij (P

T
ij (X, T )). Then we

have

〈F 〉λ(X, T ) = 1

4

∑
(i,j)∈Sw

pij 〈Fij 〉λ(X, T ) = 1

4

∑
(i,j)∈Sw

pij 〈hij 〉√2λ(x
i − xj ,

√
2tij ),

(17)

where the first equality is obtained from the linear property of the operator 〈F 〉λ
(see [13], p. 819) and the second by applying Theorem 4.1 of [13].

So computing the Gaussian transform of F amounts to computing that of hij

which is quite simple. Since h(x, t) = ‖x‖4 − ‖x‖2t2 + 1
4 t

4, the linear property of
the operator 〈h〉λ implies that

〈h〉λ(x, t) = 〈h1〉λ(x) + 〈h2〉λ(x, t) + 〈h3〉λ(t), (18)

where h1(x) := ‖x‖4, h2(x, t) := −‖x‖2t2, h3(t) := 1
4 t4. An application of

Theorem 3.4 of [13] gives

〈h1〉λ(x) = ‖x‖4 + (2 + p)λ2‖x‖2 + 1

4
p(p + 2)λ4, (19)

〈h3〉λ(t) = t4 + 3λ2t2 + 3

4
λ4. (20)

On the other hand, noting that h2(x, t) := −‖x‖2t2 = −∑p

i=1 x2
i t

2 and using the
formulation of the Gaussian transform of a decomposable function given in [13],
(p. 820), we get

〈h2〉λ(x, t) = −
p∑

i=1

(
x2

i + 1

2
λ2

)(
t2 + 1

2
λ2

)
= −

(
t2 + 1

2
λ2

)(
‖x‖2 + p

2
λ2
)

.

(21)
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So

〈h〉λ(x, t) = h(x, t) + 1

2
(3 + 2p)λ2‖x‖2 + 1

4
( 3 − 2p)λ2t2 + 1

16
(3 + 4p + 4p2)λ4.

(22)

Finally, from (17) and (22) we get the expression of the Gaussian transform of F :

PROPOSITION 2 If F: IRpn × IRnn �→ IR is defined by (14) and (13), then

〈F 〉λ(X, T ) = F(X, T ) +

1

4

∑
(i,j)∈Sw

pij [ (3+2p)λ2‖xi − xj‖2 + (23)

(3 − 2p)λ2t2
ij

])+ γ,

where γ = 1
16(3 + 4p + 4p2)λ4

∑
(i,j)∈Sw pij .

The main subproblem in our continuation approach to solve (GDGP) is

(GDGP)λ min
{〈F 〉λ(X, T ) : (X, T ) ∈ IRp.n × C

}
.

3. DCA for Solving Problem (GDGP)λ

The DCA was introduced by Pham Dinh in 1986 [16, 17] as an extension of his
subgradient algorithms (for convex maximization programming) to D.C. program-
ming. However, this field has been really developed since 1994 by the joint work
of Le Thi and Pham Dinh [3–5, 18, 19] and references therein). It is a primal-dual
subgradient method for solving a general D.C. program of the form

(Pdc) α = inf{f (x) := g(x) − h(x) : x ∈ IRn}
with g, h ∈ 	o(IRn) and its dual program

(Ddc) α = inf{h∗(y) − g∗(y) : y ∈ IRn}.
Here 	o(IRn) denotes the set of all proper lower semi-continuous convex functions
on IRn which is equipped with the canonical inner product 〈·, ·〉. The dual space of
IRn can be identified with IRn itself. The conjugate function g∗ of g ∈ 	o(IRn) is
defined by

g∗(y) = sup{〈x, y〉 − g(x) : x ∈ IRn}
and it belongs again to 	o(IRn). One says that g − h is a D.C. decomposition of
f , and g, h are its D.C. components. We note that any convex constrained D.C.
program can be written in the standard form (Pdc) by adding the indicator function
of the convex set of constraints in the objective function.
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Based on the D.C. duality and the local optimality, the DCA consists of the
construction of two sequences {xk} and {yk} such that xk+1 (resp. yk) is a solution
to the convex program (Pk) (resp. (Dk)), where (Pk) (resp. (Dk)) is obtained from
(Pdc) (resp. (Ddc)) by replacing h (resp. g∗) with its affine minorization defined by
yk ∈ ∂h(xk) (resp. xk ∈ ∂g∗(yk−1)):

(Pk)
{
inf{g(x) − [h(xk) + 〈x − xk, yk〉] : x ∈ IRn

}
,

(Dk)
{
inf{h∗(y) − [g∗(yk−1) + 〈xk, y − yk−1〉] : y ∈ IRn

}
.

In other words, the DCA yields the scheme:

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk). (24)

By this way, the sequences {g(xk)−h(xk)} and {h∗(yk)−g∗(yk)} are decreasing in
an appropriate way and the corresponding limit points x∞ and y∞ of {xk} and {yk}
(there exist such x∞’s and y∞’s if both the sequences {xk} and {yk} are bounded)
satisfy the local optimality condition

∂h(x∞) ⊂ ∂g(x∞) and ∂g∗(y∞) ⊂ ∂h∗(y∞), (25)

or they are critical points of g − h and h∗ − g∗, respectively.
The crucial feature of the DCA is the choice of a good D.C. decomposition and

a good initial point. These are still open questions to be studied. Of course, this
depends strongly on the very specific structure of the problem being considered.
In practice, for solving a given D.C. program, we try to choose g and h such that
sequences {xk} and {yk} can be easily calculated, i.e. either they are in explicit form
or their computations are inexpensive. For a detailed study of D.C. programming
and DCA we refer the readers to [2, 4, 19]. DCA was successfully applied to a lot of
different and various nonconvex optimization problems (see [2, 3, 4, 5, 18, 19] and
references therein). In particular, for the exact and/or general distance geometry
problems the two phase algorithms based on DCA [3, 5] are efficient: they globally
solved large scale problems (the problem of 12567 variables in x corresponds to
the protein contains 4189 atoms). This motivates us to use DCA for solving the
main subproblem (GDGP)λ in this work.

In this section we develop a special DCA scheme for solving Problem (GDGP)λ.
To simplify the presentation we consider the following equivalent (by omitting the
constant γ ) problem which is also denoted by (GDGP)λ:

(GDGP)λ min{Fλ(X, T ) : (X, T ) ∈ IRpn × C},
with

Fλ(X, T ) :=1

4

∑
(i,j)∈Sw

pij (dij (X) − ϕij (T ))2

+ 1

4

∑
(i,j)∈Sw

pij

(
9λ2dij (X) − 3λ2ϕij (T )

)
.
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3.1. D.C. FORMULATION OF (GDGP)λ

We first find a D.C. decomposition of Fλ(X, T ). By some simple operations we get

Fλ(X, T ) = 1

2

∑
(i,j)∈Sw

pij

(
d2

ij (X)+ϕ2
ij (T )

)+ 9

4
λ2

∑
(i,j)∈Sw

pij dij (X)

−1

4

∑
(i,j)∈Sw

pij

[(
dij (X) + ϕij (T )

)2 + 3λ2ϕij (T )
]
.

Let L and H be the functions on IRpn × C defined by

L(X, T ) := 1

2

∑
(i,j)∈Sw

pij

(
d2

ij (X) + 9

4
λ2dij (X)

)
+ 1

2

∑
(i,j)∈Sw

pij ϕ
2
ij (T ),

(26)

and

H(X, T ) := 1

4

∑
(i,j)∈Sw

pij

[
dij (X) + ϕij (T )]2 + 3λ2ϕij (T )

]
. (27)

Clearly, the function L is finite and convex on IRpn×IRd. Since for every (i, j) ∈
Sw, the function: (X, T ) → dij (X) + ϕij (T ) is finite, convex and nonnegative, the
function H is convex, too. Then the following D.C. decomposition of Fλ seems to
be natural:

Fλ(X, T ) := L(X, T ) − H(X, T ).

Let now χC be the indicator function of C defined by χC(T ) = 0 if T ∈ C,+∞
otherwise. Then Problem (GDGP)λ can be expressed in the standard form of D.C.
programs:

min
{
Fλ(X, T ) := G(X, T ) − H(X, T ) : (X, T ) ∈ IRpn × IRd

}
, (28)

where G is a function defined on the whole space IRpn×IRd : G(X, T ) = L(X, T )+
χC(T ).

Performing DCA scheme for solving (28) is reduced to calculating subdifferen-
tials of the functions H and G∗:

(Y (k),W(k)) ∈ ∂H(X(k), T (k)), (X(k+1), T (k+1)) ∈ ∂G∗(Y (k),W(k)). (29)

We shall now present the crucial results on the computation of ∂H and ∂G∗.
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3.2. COMPUTATION OF ∂H

By the very definition of H we have

∂H(X, T ) = 1

2

∑
(i,j)∈Sw

pij [dij (X) + ϕij (T )][∂dij (X) × {0} + {0} × ∂ϕij (T )]

+1

4

∑
(i,j)∈Sw

pij [{0} × 3λ2∂ϕij (T )]. (30)

So computing ∂H amounts to compute ∂dij and ∂ϕij .

Clearly, ϕij is differentiable: ϕij (T ) = T 2
ind(i,j) = 〈T ,Eind(i,j)〉2

IRd , with Eind(i,j) =
(0, ..., 1

ind(i,j)
, ...0)T ∈ IRd , (Ek ∈ IRd is the unit vector with one in the kth compon-

ent and zero otherwise). Hence ∇ϕij (T ) = 2T
ind(i,j)

Eind(i,j).

On the other hand, the relation QT
ijX = xi − xj (Qij is the (pn × p)− matrix

defined in (16)) implies that ([20])

∂dij (X) = Qij∂(‖.‖2)(QT
ijX) = 2Qij (x

i − xj ).

Hence dij is also differentiable and ∇dij (X) = 2Qij (x
i − xj ).

Since both ϕij and dij are differentiable, H is differentiable too, and a gradient
of H is explicitly defined by ∇H(X, T ) = (Y,W) with

Y =
∑

(i,j)∈Sw

pij [dij (X) + ϕij (T )]Qij (x
i − xj ), (31)

W =
∑

(i,j)∈Sw

pij

[
(dij (X) + ϕij (T )

]
Tind(i,j)Eind(i,j) + 3

2
λ

2 ∑
(i,j)∈Sw

pij T ind(i,j)
Eind(i,j).

(32)

3.3. COMPUTATION OF ∂G∗

As aforementioned, a subgradient of G∗ at (Y (k),W(k)) is an optimal solution to
the convex problem of the form (Pk):

min{G(X, T ) − 〈(Y (k),W(k)), (X, T )〉 : (X, T ) ∈ IRpn × IRd }.
The function G is separable in its variables, say G(X, T ) = η(X) + ζ(T ) +

χC(T ), where

η(X) := 1

2

∑
(i,j)∈Sw

pij

(
d2

ij (X) + 9

4
λ2dij (X)

)
, ζ(T ) := 1

2

∑
(i,j)∈Sw

pijϕ
2
ij (T ).
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Hence the last problem can be decomposed into the following two ones:

min
{
η(X) − 〈Y (k), X〉 : X ∈ IRpn

}
, (33)

and

min
{
ζ(T ) − 〈W(k), T 〉 : T ∈ C

}
. (34)

Since

ζ(T )−〈W(k), T 〉 = 1

2

∑
(i,j)∈Sw

pij T
4
ind(i,j) −

∑
(i,j)∈Sw

W(k)

ind(i,j)
Tind(i,j),

Problem (34) is again separable, and then T ∗ = (T ∗
ind(i,j))(i,j)∈Sw is a solution to

(34) if and only if, for each (i, j) ∈ Sw, T ∗
ind(i,j) is a solution to the one-dimensional

convex optimization problem

min

{
1

2
pijT

4
ind(i,j) − W(k)

ind(i,j)
Tind(i,j) : lij ≤ Tind(i,j) ≤ uij

}
.

Hence, the optimal solution T ∗ = (T ∗
ind(i,j)) of (34) is explicitly given by

T ∗
ind(i,j) =




3

√
W

(k)
ind(i,j)

2pij
if lij ≤ 3

√
W

(k)
ind(i,j)

2pij
≤ uij ,

lij if
3

√
W

(k)
ind(i,j)

2pij
< lij ,

uij if
3

√
W

(k)
ind(i,j)

2pij
> uij .

(35)

It remains to solve (33) for constructing the sequence {X(k)}. Remark that since
dij is differentiable, η is differentiable too, and X∗ is a solution of (33) if and
only if Y (k) = ∇η(X∗). Hence we can obtain X∗ by solving the nonlinear system
Y (k) = ∇η(X∗). Clearly, solving (33) by this approach is not efficient because it
requires the solution of a nonlinear system.

The efficiency of the DCA suggests us to use it again in this work to solve
Problem (33). As will be seen later, with a suitable choice of D.C. decompositions
for the objective function of (33) the corresponding DCA is simple, inexpensive
since it requires (at each iteration) only the projection of a point onto an Euclidean
ball which is explicitly computed.

First of all, to guarantee the existence of a solution to (33), the boundedness of
the sequence {X(k)} we will recast this problem in an appropriate space. Let A be
the vector subspace of Rpn defined by

A := {X = (x1, x2, . . . xn)T ∈ Rpn : x1 = x2 = . . . = xn}. (36)
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Then the orthogonal space of A is

A⊥ := {X ∈ Rpn :
n∑

i=1

xi = 0}. (37)

LEMMA 1 Problem (33) is equivalent to

min
{
η(X) − 〈Y (k), X〉 : X ∈ A⊥} (38)

in the sense that if X∗ is an optimal solution to (38), then X∗ + U is an optimal
solution to (33) for all U ∈ A.

Proof. For any V ∈ Rpn we can write V = U + X with U ∈ A, X ∈ A⊥.
Clearly, dij (U) := ‖ui − uj‖2 = 0 for all U ∈ A. Then η−1(0) ⊃ A. In fact
we have η−1(0) = A in virtue of the connectedness of the graph G(N,S) (see
Introduction). On the other hand, from the definition of Y (k) in (31), we have Y (k) ∈
A⊥, so 〈U, Y (k)〉 = 0 for all U ∈ A. Hence, for any V ∈ Rpn, we have

η(V ) − 〈V, Y (k)〉 = η(X) − 〈X,Y (k)〉,
with X ∈ A⊥. The proof is then completed.

It is not difficult to verify that the feasible set A⊥ of Problem (38) enjoys some
interesting properties (using η−1(0) = A and the positive homogeneity of η):

(i) The objective function of (38), namely η(X) − 〈Y (k), X〉 is coercive on A⊥.
Consequently, (38) has always a solution.

(ii)
∑

i<j ‖xi − xj‖2 = n‖X‖2 for all X = (x1, x2, . . . xn)T ∈ A⊥.

Define now the set � by � :=
{
X ∈ A⊥ :∑i<j ‖xi − xj‖2 ≤∑i<j u2

ij

}
, where

the upper bounds uij of distances ‖xi − xj‖2 for (i, j) /∈ Sw is computed by using
the relationships uij = min(uij , uik + ukj ). Due to property (ii) � is in fact the

Euclidean ball in A⊥: � =
{
X ∈ A⊥ : ‖X‖ ≤ r :=

√
1
n

∑
i<j u2

ij

}
. Then we can

reformulate Problem (38) in the form

min
{
η(X) − 〈Y (k), X〉 : X ∈ �

}
. (39)

Hence the sequence {X(k)} defined from (39) is well defined and bounded.
To solve (39) by DCA, we compute a positive number ρ such that the function

�(X) := 1
2ρ‖X‖2 − η(X) is convex (a lower bound of such a ρ can be easily

determined) and consider the following D.C. decomposition

η(X) − 〈Y (k), X〉 = �(X) − �(X) :=
[

1

2
ρ‖X‖2 − 〈Y (k), X〉

]
− (40)[

1

2
ρ‖X‖2 − η(X)

]
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Then (39) can be written in the standard form of D.C. programs:

min

{
χ�(X) +

[
1

2
ρ‖X‖2 − 〈Y (k), X〉

]
−
[

1

2
ρ‖X‖2 − η(X)

]
: X ∈ IRpn

}
. (41)

The DCA applied to (41) consists of generating the sequence {X(l)} such that X(l+1)

solves the following problem

min

{[
1

2
ρ‖X‖2 − 〈Y (k), X〉

]
− 〈ρX(l) − ∇η(X(l)), X〉 : X ∈ �

}
,

i.e. X(l+1) = Proj�

(
X(l) − 1

ρ
(∇η(X(l)) − Y (k))

)
.

Here Proj� stands for the projection onto �. Since � is an Euclidean ball in A⊥,
the projection onto � is explicitly computed, and DCA applied to (39) can be
described as follows:
Algorithm 1 DCA for solving (39)

Let ε > 0, and X(0) ∈ A⊥ be given.

For l = 0, 1, . . . until ‖
X(l+1) − X(l)‖ ≤ ε set ξ = X(l) − 1

ρ

(∇η(X(l)) − Y (k)
)
.

If ‖ξ‖ ≤ r then set X(l+1) = ξ, otherwise set Xl+1 = (r/‖ξ‖)ξ.
REMARK 1 (i) Since (33) is a convex program, Algorithm 1 provides an optimal
solution to (33).
(ii) Algorithm 1 is inexpensive, and thus works very well in practice for large scale
problems.
(iii) A good starting point of Algorithm 1 may be X(k), the current solution at
iteration k of the DCA scheme applied to (GDGP)λ.

We now are in a position to describe our special DCA applied to (GDGP)λ.

3.4. DESCRIPTION OF THE DCA FOR SOLVING (GDGP)λ

Algorithm 2 (DCA applied to (GDGP)λ).

Let ε, ε1, ε2 > 0, and X(0) ∈ A⊥, T (0) ∈ C be given, k=0.

Step k1: set

Y (k) =
∑

(i,j)∈Sw

pij [
∥∥∥xi(k) − xj(k)

∥∥∥2 +T 2(k)

ind(i,j))]Qij (x
i(k) − xj(k)

). (42)
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Step k2: set T (k+1) = (T
ind(i,j)

)
(k+1)

(i,j)∈Sw as follows:

T
(k+1)

ind(i,j) =




µ := 3

√
1
2

(∥∥xi(k) − xj(k)
∥∥2 +T 2(k)

ind(i,j)

)
T

(k)

ind(i,j) if lij ≤ µ ≤ uij ,

lij if µ < lij ,

uij if µ > uij .

(43)

Step k3: set l := 0, X(k,l) := X(k)

Repeat

X(k,l+1) =
{

ξ := X(k,l) − 1
ρ

(∇η(X(k,l) − Y (k)
)

if ‖ξ‖ ≤ r

(r/‖ξ‖)ξ if ‖ξ‖ > r
(44)

until ‖X(k,l+1) − X(k,l)‖ ≤ ε1.

Set ‖X(k+1) :=X(k,l+1)‖.
If either |Fλ(X

(k), T (k)) − Fλ(X
(k+1), T (k+1))| ≤ ε2Fλ(X

(k+1), T (k+1)) or

(1 − ε)lij ≤
∥∥∥xi(k+1) − xj(k+1)

∥∥∥ ≤ uij (1 + ε), for all (i, j) ∈ Sw (45)

then STOP, (X(k+1), T (k+1)) is an solution to (GDGP)λ

else set k = k + 1 and go to step k1.
The main results on the convergence of DCA for general D.C. programs (see

[2, 4, 19] can be refined as follows:

PROPOSITION 3 The sequences {X(k), T (k)} and {Y (k),W(k)} generated by Al-
gorithm 2 are bounded and make respectively the primal and dual objective func-
tions in (28) decrease. Their limit points satisfy the local optimality conditions
(25).

Proof. According to [2, 4, 19] it suffices to prove the boundedness of both
these sequences. By the very construction, the sequence {X(k), T (k)} is bounded:
{X(k), T (k)} ∈ � × C. It follows that the sequence {Y (k),W(k)} is bounded too,
because the set ∇H(� × C) is bounded.

4. A continuation algorithm for the distance geometry problems

We now present our main algorithm for solving the distance geometry problem
(GDGP), say, a continuation algorithm based on the Gaussian transform and DCA.
Given a sequence of smoothing parameters

λ0 > λ1 > ... > λstep = 0,
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our continuation algorithm uses the DCA to compute a minimizer (Xq+1, T q+1) of
〈F 〉λq

with the previous one (Xq, T q) as the starting point. The algorithm generates
then a sequence ({Xq, T q}), and (Xstep+1, T step+1) is a candidate for a global
minimizer of (GDGP) (see Theorem 5.2 in [13] concerning the convergence of
continuation algorithms).

Since the objective function of (GDGP)λ0 in our method is not necessarily con-
vex, we investigate a technique for finding a good starting point (X(0), T (0)) of the
DCA at the first step. We take T (0) by T

(0)

ind(i,j) = uij +lij

2 for all (i, j) ∈ Sw and then

choose X(0) so that
∥∥xi(0) − xj(0)

∥∥ = T
(0)

ind(i,j) for at least n − 1 pairs (i, j )∈ Sw by
the procedure Starting described as follows:

Procedure Starting:

Let (i0, j0) ∈ Sw such that T
(0)

ind(i0,j0)
= max

{
T

(0)

ind(i,j) : (i, j) ∈ Sw
}

.

Let xi0 = (0, 0, 0)T and generate xj0 such that
∥∥xi0 − xj0

∥∥ = T
(0)

ind(i,j).

Set M:={i0, j0} , k := j0.

Do while |M| < n

Choose (k, jk) ∈ S such that T
(0)

ind(k,jk)
= maxj

{
T

(0)

ind(k,j) : (k, j) ∈ S
}

.

Generate xjk such that
∥∥xk − xjk

∥∥ = T
(0)

ind(k,jk)
.

Set M := M ∪ {jk} , k := jk

end do

This procedure is an amelioration of Algorithm struct given in [15]: it provides a
point satisfying the largest distance constraint in S and the largest constraint (k, jk)

among the pairs (k, j) ∈ S for a given k, while the point generated by Algorithm
struct satisfies some n − 1 distance constraints. In our computational experiments
this procedure is better than Algorithm Struct for finding the starting point to the
DCA.

Finally, the main algorithm can be described as follows:
The main algorithm CGDCA:

Choose T 0 by T 0
ind(i,j) = uij +lij

2 for (i, j)∈ Sw and determine X0 by
Procedure Starting. Set q := 0.

Do while (q ≤ step)

Compute (Xq+1, T q+1), a solution to Problem (GDGP)λq
by applying

Algorithm 2 from the starting point (Xq, T q). Increase q by 1.

end do

REMARK 2 To solve the exact geometry problem (1) the variable T is not needed.
So in Algorithm 2 the step k2 is eliminated and the vector Y (k) at the step k1 is
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defined by

Y (k) =
∑

(i,j)∈Sw

pij

[∥∥∥xi(k) − xj(k)
∥∥∥2 + δ2

ij

]
Qij (x

i(k) − xj(k)

).

5. Computational Experiments and Conclusions

Our algorithms are coded in FORTRAN 77 and run on an SGI Origin 2000 mul-
tiprocessor with IRIX system. We considered 16 problems whose data are derived
from 16 structures of proteins given in PDB data bank. Table 1 gives the summar-
ized information about these structures (in this table, “Exp.”is the abbreviation of
“Exploitation” and “MAS” is that of “Minimized Average Structure”). For each
structure we generated a set of distances by using distances between the atoms in
the same residue as well as those in the neighboring residues (this way has been
used in [3, 15]). More precisely, if Rk is the kth residue, then S is specified by

S = {(i, j) : xi ∈ Rk, x
j ∈ Rk ∪ Rk+1}

and the given distances for the exact geometry problem are δij = ‖xi − xj‖ for all
(i, j) ∈ S. To generate the given bounds in the general distance geometry problem
we set

lij = (1 − ε)‖xi − xj ‖, uij = (1 + ε)‖xi − xj‖, (i, j) ∈ S (46)

for a given ε ≥ 0.
The main aim of the computational experiments is to show that the algorithm

CGDCA based on the smoothing technique and via DCA is efficient to both exact
and general distance geometry problems in large scale real world molecular con-
formations. We are interested not only in the quality of solutions, but also in the
size of molecules to be conformated. We consider molecules containing up to 4189
atoms (the corresponding (GDGP) has 32400 variables).

We set pij = 1 for all i 
= j in (7).
In Algorithm 2 we took ε1 = 10−7, ε2 = 10−8 and ε = 0.01. If (45) is satis-

fied when stopping algorithm, we say that an ε-global minimizer of the geometry
distance problem (3) is obtained.

The parameters λ0 and step in the continuation algorithm are chosen as in [15],

say λ0 is the median of all λij =
(

lij√
5uij

+ √
2(1 − lij

uij

)
uij with (i, j) ∈ S and

step = �20λ0�.
Our experiments are composed of three parts. First, we study in detail the

performance of CGDCA on 16 test problems with two values of ε in (46) while
generating given bounds: ε = 0.001 and ε = 0.08 . The results are presented in
Tables 2 and 3 where we indicate the following values:
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Table 1. Summarized information about test problems from PDB data bank

ID code Exp. method Classification Atoms (n) Residues

304D X-ray diffraction Deoxyribonucleic Acid 237 52

8DRH NMR (MAS) Deoxyribonucleic Acid/Ribonucleic Acid 329 16

1AMD NMR (MAS) Deoxyribonucleic Acid 380 12

2MSJ X-ray diffraction Antifreeze Protein 480 66

124D NMR Deoxyribonucleic/Ribonucleic Acid 508 16

141D NMR Deoxyribonucleic Acid 527 26

132D NMR Deoxyribonucleic Acid 750 24

1A84 NMR Deoxyribonucleic Acid 758 24

104D NMR DNA/RNA Chimeric Hybrid Duplex 766 24

103D NMR (MAS) Deoxyribonucleic Acid 772 24

2EQL X-ray diffraction Hydrolase (O-Glycosyl) 1023 129

1QS5 X-ray diffraction Hydrolase 1429 162

1QSB X-ray diffraction Hydrolase 1431 162

6GAT NMR Complex (Transcription Regulation/DNA) 1853 92

7HSC NMR Molecular Chaperone 2482 159

2CLJ Theoretical model Hydrolase 4189 543

• numva: the number of variables in (GDGP), say, numva = 3n + |Sw|.

• t0: CPU time of Procedure Starting

• ttotal: the total CPU time of the main CGDCA (all CPU times were computed
in seconds).

• step: the number of the optimization steps in the continuation algorithm CG-
DCA.

• F ∗: the approximate optimal value of the distance geometry problem (GDGP):

F ∗ :=
∑

(i,j)∈Sw

pij (‖x∗i − x∗j ‖2−t∗ij
2
)2

• aveer: the average relative error defined by

1

|Sw|


 ∑

(i,j)∈Sw

max



∥∥∥x∗i − x∗j

∥∥∥− uij

uij

,
lij −

∥∥∥x∗i − x∗j
∥∥∥

lij
, 0




 (47)
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• maxer: the maximal relative error defined by

max


max



∥∥∥x∗i − x∗j

∥∥∥− uij

uij

,
lij −

∥∥∥x∗i − x∗j
∥∥∥

lij
, 0


 : (i, j) ∈ Sw


 . (48)

In the second experiment we are interested in the influence of the length of
bounds on the behavior of CGDCA on four test problems. We generate the data in
the same way as in the first experiment with different values of ε: 0.0, 0.001, 0.01,
0.02, 0.04, 0.08. The results are reported in Table 4. Remember that when ε = 0.0
we are faced with the exact distance geometry problem (1).

In the third experiment we compare the performance of our approach CGDCA
and the two phase algorithm GDCA in [3] with ε = 0.08 while constructing given
bounds. The results for this experiment are reported in Table 5.

Table 2. The performance of CGDCA for PDB data in case ε = 0.001

ID code t0 step ttotal F∗ aver maxer

304D 0.15 4 160.17 4.88E-03 1.24E-05 3.99E-03

8DRH 0.32 4 67.76 1.10E-04 1.01E-06 1.04E-03

1AMD 0.98 4 47.68 9.97E-02 7.23E-05 9.99E-03

2MSJ 0.02 2 28.63 1.47E-04 2.23E-06 9.32E-03

124D 2.02 4 153.20 4.08E-02 2.03E-05 9.99E-03

141D 0.93 4 313.43 7.72E-04 1.07E-05 2.17E-03

132D 4.02 4 433.80 2.17E-03 5.42E-06 2.96E-03

1A84 4.30 4 382.64 3.94E-03 1.62E-06 3.45E-03

104D 4.53 4 151.35 1.87E-02 3.20E-05 9.99E-03

103D 4.86 4 263.19 6.38E-02 2.87E-05 9.99E-03

2EQL 0.80 4 232.47 1.71E-03 2.34E-06 9.99E-03

1QS5 1.37 4 673.05 6.25E-03 4.56E-05 1.00E-02

1QSB 1.35 4 774.48 2.74E-03 3.54E-05 9.99E-03

6GAT 15.58 4 541.07 8.44E-02 4.52E-05 9.98E-03

7HSC 15.40 2 387.53 2.83E-03 1.31E-05 9.99E-03

2CLJ 14.08 2 1079.59 1.12E-02 2.12E-05 1.03E-02

The results in Tables 2 and 3 show that Algorithm CGDCA is efficient to both
cases when lij and uij are close or not so: it finds a global minimizer in all cases
when ε = 0.001 and in 70% cases when ε = 0.08. The algorithm is very fast: it
solves problems with 32400 variables in 18 minutes.

Surprisingly enough, the results in Table 4 show that in general the reliability
and the convergence rate of GDCA increase when ε decreases (the length of bounds
decreases). Moreover, the algorithm is very efficient to the exact distance geometry
problem (1).
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Table 3. The performance of CGDCA for PDB data in case ε = 0.08

ID code numva t0 step ttotal F∗ aver maxer

304D 3030 0.15 6 146.06 0.23E+00 7.80E-05 2.02E-03

8DRH 4536 0.32 6 35.03 1.32E-03 1.93E-05 9.98E-05

1AMD 7326 0.98 6 102.85 9.50E-04 1.25E-05 9.99E-03

2MSJ 1440 0.02 2 32.69 1.83E-01 1.00E-04 3.53E-02

124D 9831 2.02 6 387.06 2.20E-03 1.78E-05 9.99E-03

141D 7196 0.93 6 241.23 1.47E+00 1.22E-04 8.77E-02

132D 14344 4.17 6 320.04 4.50E-03 01.35E-05 9.99E-03

1A84 14619 4.30 6 484.84 5.12E-04 9.50E-06 9.99E-03

104D 14907 4.53 6 371.74 2.54E-04 5.63E-06 1.30E-02

103D 15093 4.86 6 411.48 2.68E-03 1.00E-05 9.99E-03

2EQL 7957 0.80 4 183.27 3.69E-03 2.97E-05 9.99E-03

1QS5 10642 1.37 4 520.72 0.21E+00 8.10E-05 7.58E-02

1QSB 10637 1.41 4 578.31 3.00E-02 4.10E-05 6.33E-02

6GAT 28288 15.67 6 1229.52 2.00E-02 3.22E-05 9.99E-03

7HSC 29962 15.80 4 1129.08 3.66E-03 8.19E-06 9.99E-03

2CLJ 32400 14.08 4 919.04 1.37E+00 5.00E-05 1.12E-01

Table 4. The performance of CGDCA as the length of bounds varies

ID code 1AMD 124D 104D 2EQL

ε ttotal maxer ttotal maxer ttotal maxer ttotal maxer

0.08 102.85 9.99E-03 387.06 9.99E-03 371.74 1.30E-02 183.27 9.99E-03

0.04 71.03 5.84E-02 388.08 1.02E-02 265.28 9.99E-03 339.41 9.75E-02

0.02 49.18 7.15E-02 372.16 1.03E-02 241.63 9.99E-03 204.86 3.39E-01

0.01 79.20 1.04E-02 272.04 9.99E-03 219.26 9.99E-03 228.89 6.47E-02

0.001 47.68 9.99E-03 153.20 9.99E-03 151.35 9.99E-03 237.47 9.99E-03

0.0 48.06 6.42E-03 129.85 8.30E-03 134.30 9.99E-03 263.07 9.99E-03

According to the results in Table 5, CGDCA is faster and more reliable than
the two phase algorithm GDCA. In fact, the main difference between CGDCA
and GDCA is that the first phase of GDCA is replaced by the smoothing technique
in CGDCA, we then need not complete an approximate distance matrix (this is
expensive when the dimension is large and the number of constraints is small) and
work only with given distances (sparse distance matrices).
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Table 5. Comparison with the two phase algorithm GDCA

ID code CGDCA GDCA

ttotal F∗ maxer ttotal F∗ maxer

8DRH 35.03 1.32E-03 9.98E-05 198.80 8.66E-02 6.68E-02

2MSJ 32.69 1.86E-01 3.53E-02 360.39 4.65E-04 9.95E-03

132D 320.04 4.50E-03 9.99E-03 1794.52 3.79E-03 9.98E-02

104D 371.84 2.54E-04 1.30E-02 6198.2 1.32E-02 1.00E-02

103D 411.48 2.68E-03 9.99E-03 1107.0 1.69E+00 2.70E-01

2EQL 183.27 3.69E-03 9.99E-03 4318.9 4.00E-03 9.99E-03

Conclusions

We have presented a continuation approach based on D.C. optimization and DCA
for solving large scale molecular optimization problems from distance matrices.
The main points in this approach are:

(i) Reformulation of the distance geometry problems (1) and (3) as a bound
constrained smooth optimization problem;

(ii) Smoothing technique via the Gaussian transform of the objective function,
and a D.C. formulation to the transformed problems;

(iii) D.C. optimization algorithm with suitable D.C. decompositions to the result-
ing problems.

Computational experiments show that our method is successful in locating the
large configurations satisfying given distance constraints: the DCA globally solved
distance geometry problems with up to 4189 atoms (32 400 variables).

Several interesting issues arise from the present work. The first deals with the
reformulation of the distance geometry problems. As indicated above, our new
formulation has several advantages not only to DCA, but also for existing methods
for bound constrained smooth problems. Nevertheless, from the numerical exper-
iments we observe that, the maximal error of distance constraints occurs on the
same pair of atoms when the current point is near a solution. So it is interesting
to consider an objective function dealing simultaneously with the sum of all errors
and the maximal error of distance constraints. In other word, we can investigate a
predictor-corrector algorithm to exploit the efficiency of DCA.

The second is the amelioration of our code by using a parallel solver.
The third concerns the data. In this paper we generated the distance data from

the complete protein given in PDB data bank which are real models (see Table 1).
We follow the way of Moré and Wu [15] for constructing the data because our idea
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to use the continuation approach is suggested by their work. We wish to expand
our testing to distance data generated by more realistic ways and to distance data
derived from NMR experiments. These issues are currently in progress.
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